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ABSTRACT
Background. From genome wide association studies on Alzheimer’s disease (AD),
it has been shown that many single nucleotide polymorphisms (SNPs) of genes of
different pathways affect the disease risk. One of the pathways is endocytosis, and
variants in these genes may affect their functions in amyloid precursor protein (APP)
trafficking, amyloid-beta (Aβ) production as well as its clearance in the brain. This
study uses computational methods to predict the effect of novel SNPs, including
untranslated region (UTR) variants, splice site variants, synonymous SNPs (sSNPs)
and non-synonymous SNPs (nsSNPs) in three endocytosis genes associated with AD,
namely PICALM, SYNJ1 and SH3KBP1.
Materials andMethods. All the variants’ information was retrieved from the Ensembl
genome database, and then different variation prediction analyses were performed.
UTRScan was used to predict UTR variants while MaxEntScan was used to predict
splice site variants. Meta-analysis by PredictSNP2 was used to predict sSNPs. Parallel
prediction analyses by five different software packages including SIFT, PolyPhen-2,
Mutation Assessor, I-Mutant2.0 and SNPs&GO were used to predict the effects of
nsSNPs. The level of evolutionary conservation of deleterious nsSNPs was further
analyzed using ConSurf server. Mutant protein structures of deleterious nsSNPs were
modelled and refined using SPARKS-X and ModRefiner for structural comparison.
Results. A total of 56 deleterious variants were identified in this study, including 12UTR
variants, 18 splice site variants, eight sSNPs and 18 nsSNPs. Among these 56 deleterious
variants, seven variants were also identified in the Alzheimer’s Disease Sequencing
Project (ADSP), Alzheimer’s Disease Neuroimaging Initiative (ADNI) andMount Sinai
Brain Bank (MSBB) studies.
Discussion. The 56 deleterious variants were predicted to affect the regulation of gene
expression, or have functional impacts on these three endocytosis genes and their gene
products. The deleterious variants in these genes are expected to affect their cellular
function in endocytosis and may be implicated in the pathogenesis of AD as well. The
biological consequences of these deleterious variants and their potential impacts on
the disease risks could be further validated experimentally and may be useful for gene-
disease association study.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common type of dementia. According to the amyloid
hypothesis, amyloid-beta (Aβ) is the primary factor to initiate a pathogenic cascade of AD
in the brain (see review in Du, Wang & Geng (2018)). Aβ is generated from proteolysis
of its precursor, amyloid precursor protein (APP). The oligomeric assemblies of Aβ that
form amyloid plaques in extracellular space of neuron cell cause synaptic loss between
neurons. Endocytosis is one of the biological pathways affecting APP trafficking and many
endocytosis genes, including BIN1, CD2AP, PICALM, EPHA1 and SORL1 were identified
as AD-associated in genome wide association study (GWAS) and other genetic studies (see
review in Giri, Zhang & Lü (2016)).

From a study by Treusch et al. (2011), 40 types of Aβ modifiers were identified through
a yeast genome-wide overexpression study, which demonstrated a genetic link between Aβ
and endocytosis pathway in the pathogenesis of AD. There are two types of Aβ modifiers,
namely Aβ suppressors, which decrease the toxicity of soluble Aβ oligomers and Aβ
enhancers, which increase the toxicity. Among the identified Aβ modifiers, three of the
Aβ suppressors are involved in endocytosis, namely YAP1802, INP52 and SLA1, and they
have human orthologues, PICALM, SYNJ1 and SH3KBP1, respectively. Orthologous genes
typically have similar biological function. Therefore, these three human orthologue genes
may also play a role in modifying the toxicity of Aβ oligomers in human. Besides that, these
human orthologues also play a role in clathrin-mediated endocytosis (CME), which is the
major route for synaptic vesicle recycling (see review in Milosevic (2018)). In addition,
CME and its regulators have also been linked to the trafficking of Aβ (Domínguez-Prieto et
al., 2018). Therefore, it is of great interest to study the potential biological roles of PICALM,
SYNJ1 and SH3KBP1 genes in the pathogenesis of AD.

PICALM (Phosphatidylinositol binding clathrin assembly protein) is mostly expressed
in the brain capillary endothelium and neuron cells, and it is involved in cellular trafficking
and the formation of clathrin-coated pit during CME (Tebar, Bohlander & Sorkin, 1999).
PICALM gene is one of the validated AD risk genes first identified in a GWAS (Harold
et al., 2009). The increased level of PICALM protein promotes the internalization of APP
while its reduction causes the translocation of APP on the cell surface (Xiao et al., 2012).
Besides that, PICALM helps in Aβ clearance by increasing Aβ translocation across the
blood–brain barrier (Zhao et al., 2016). Several PICALM variants, including rs3851179 and
rs592297, were identified to be associated with AD (Harold et al., 2009).

SYNJ1 (Synaptojanin 1) is the major synaptic polyphosphoinositide phosphatase, which
regulates the uncoating and remobilization of synaptic vesicles during CME at the axon
terminus (Cremona et al., 1999). SYNJ1 interacts with one of the AD risk genes, BIN1
(Bridging integrator 1) (Ramjaun et al., 1997). ApoE4-induced upregulation of SYNJ1
leads to the phospholipid homeostatic dysregulation in the brain, which is associated with
the cognitive deficits in AD (Zhu et al., 2015). Conversely, downregulation of SYNJ1 not
only restores the phospholipid homeostasis, but also reduces the level of phosphorylated
tau protein in vitro (Cao et al., 2017). On the other hand, variant in SYNJ1 gene was found
to be associated with the heritable form of Parkinson’s disease (PD) (Krebs et al., 2013).
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SH3KBP1 (SH3-Domain Kinase Binding Protein 1), also known as CIN85, is an adaptor
protein with multiple cellular functions through binding to different protein partners.
SH3KBP1 is a homologous gene to one of the validated AD risk genes, CD2AP (see review
in Rosenthal & Kamboh (2014)). These two homologous genes were reported to have
high sequence and structural similarities, and they were identified as interacting partners
(Mutso et al., 2018). A transgenic Drosophila study also showed the reduction of cindr
gene expression, a fly orthologue of SH3KBP1, increased tau neurotoxicity (Shulman et al.,
2014).

Single nucleotide polymorphisms (SNPs) play important roles in many complex human
diseases, including auto-immune diseases, diabetes and schizophrenia (see review in
Visscher et al. (2017)). SNPs that fall on either coding or non-coding regions of a genome
can exert their biological effects and could cause diseases. There are two types of SNPs in the
coding regions, namely synonymous SNPs (sSNPs) and non-synonymous SNPs (nsSNPs).
For sSNPs, they do not change the amino acid sequence of a translated protein. However,
they can exert their biological consequences through changes in alternative splicing,
mRNA stability or translation rate (see review in Sauna & Kimchi-Sarfaty (2011)). While
for nsSNPs, these variants cause amino acids substitution and may have direct structural
and functional impacts to the proteins. Non-coding regions SNPs may affect transcription
factor binding, gene splicing, RNA degradation and other biological processes.

Previous studies have demonstrated the important roles of genetic variants in the
development of AD. However, there are limited studies about the functional variants in
these AD-associated endocytosis genes, especially SYNJ1 and SH3KBP1 genes. In this study,
the effect of UTR variants, splice site variants, sSNPs and nsSNPs in PICALM, SYNJ1 and
SH3KBP1 genes, was predicted and analyzed using computational methods. The variants
with high probability of affecting the protein structure and function are identified in the
present study.

MATERIAL AND METHODS
Dataset retrieval
The information of the genes of interest was retrieved from the Ensembl genome database
(release 87) (http://www.ensembl.org/index.html) in March 2017 for computational
analysis. Ensembl comprises the variant data from multiple sources, such as dbSNP,
COSMIC and DVGa. The positions of the variants were mapped on the human reference
genome GRCh38, which is also equivalent to the UCSC (University of California, Santa
Cruz) hg38.

Analysis of UTRs variants
Both 3′ and 5′ UTR sequences of the genes of interest were collected from the curated
database, UTRdb (http://utrdb.ba.itb.cnr.it/). These sequences with different variants were
submitted to the UTRScan, which is a pattern matcher to search for UTR motifs collected
in UTRSite (Grillo et al., 2010). UTRSite is a collection of functional sequence patterns
located in 3′ and 5′ UTR sequences, such as upstream open reading frame (uORF), internal
ribosome entry site (IRES), and polyadenylation signal (PAS). If different functional
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patterns are found between wild type and mutant UTR sequences, the variant is predicted
to be functionally significant.

Analysis of splice site variants
The impact of splice site variants was predicted by usingMaxEntScan integrated in Ensembl
Variant Effect Predictor (VEP) (http://www.ensembl.org/Tools/VEP), which implements
the Maximum Entropy Distribution approach. The input for the VEP requires only variant
identifier (variant ID). For each variant, a consensus score with value in the range of −20
to +20 is calculated by MaxEntScan. Then, the score difference (in percentage) between
wild type and mutant is calculated manually. The consensus score threshold of 3 and
score difference threshold of 30% were applied to predict the splice site variants from
both positive and negative controls (Desmet et al., 2009). Table S1 shows the possible
consequences of splice site variants predicted by MaxEntScan.

Analysis of sSNPs
PredictSNP2 (http://loschmidt.chemi.muni.cz/predictsnp2/) is a web server that predicts
the effect of nucleotide substitution in any region of the genome. The server integrates five
prediction tools—CADD, DANN, FATHMM, FunSeq2 and GWAVA (Bendl et al., 2016).
The consensus score generated by PredictSNP2 ranges from−1 to+1, in which the variant
is considered neutral if the consensus score falls between−1 and 0, and is deleterious if the
consensus score falls between 0 and +1.

Analysis of nsSNPs
Five prediction software packages that implement different prediction methodologies,
namely SIFT (Ng & Henikoff, 2001), PolyPhen-2 (Adzhubei, Jordan & Sunyaev, 2013),
Mutation Assessor (Reva, Antipin & Sander, 2011), I-Mutant2.0 (Capriotti, Fariselli
& Casadio, 2005) and SNPs&GO (Capriotti et al., 2013), were used to predict the
deleteriousness of all the nsSNPs. The nsSNPs that passed all the default cutoff points
were considered to be deleterious nsSNPs. Then, the degree of evolutionary conservation
of the deleterious nsSNPs was estimated using the ConSurf server (Ashkenazy et al., 2016),
and the mutant protein structures were modelled and refined by SPARKS-X (Yang et al.,
2011) and ModRefiner (Xu & Zhang, 2011).

SIFT (Sorting Intolerant From Tolerant, version 5.2.2) from http://sift.jcvi.org/ is a
sequence conservation-based package that predicts the functional impact of amino acid
substitution based on sequence homology and physiochemical diversity (Ng & Henikoff,
2001). The cutoff point was set at 0.05, so variants with a SIFT score lower than 0.05 were
considered deleterious.

PolyPhen-2 (Polymorphism phenotype 2, version 2.2.2) from http://genetics.bwh.
harvard.edu/pph2/, is a sequence- and structure-based prediction package. It predicts the
impact of nsSNPs based on sequential and structural features collected from multiple
databases and tools, such as UniProtKB, BLAST, Pfam and DSSP (Adzhubei, Jordan &
Sunyaev, 2013). The cutoff point was set at 0.9, so variants with PolyPhen-2 score (known
as PSIC score) higher than 0.9 were categorized as probably damaging.
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Mutation Assessor (release 3) from http://mutationassessor.org/r3/ performs the
sequence conservation-based prediction by assessing the entropy differences of an
alignment position. It uses the sequence homology information of both protein families
and subfamilies to assess the level of conservation of each residue (Reva, Antipin & Sander,
2011). The functional impact of the variants was categorized into ‘‘neutral’’, ‘‘low’’,
‘‘medium’’ or ‘‘high’’ impact categories. In this study, the cutoff level for the deleterious
variant was set at ‘‘medium’’ or ‘‘high’’ impact.

I-Mutant2.0 (http://folding.biofold.org/i-mutant/i-mutant2.0.html) is a structure
analysis-based prediction software that analyzes the protein stability change for a single
point variant (Capriotti, Fariselli & Casadio, 2005). I-Mutant2.0 works by calculating the
change in Gibbs free energy between the wild type and mutant protein structures. Variants
with energy change value (DDG) less than−1 or greater than 1 indicate that these variants
are destabilizing or stabilizing the protein, respectively.

SNPs&GO (Single Nucleotide Polymorphism Database & Gene Ontology), at
http://snps.biofold.org/snps-and-go/snps-and-go.html, combines both sequence and
structure information to perform prediction. Information from Gene Ontology terms is
also taken into consideration in predicting the functional impact of the variants (Capriotti
et al., 2013). The cutoff point was set at 0.5, so variants with probability greater than 0.5
were predicted as disease-related.

ConSurf (http://consurf.tau.ac.il/2016/) is a widely used evolutionary conservation
analysis tools based on amino acid positions among the homologous protein sequences
(Ashkenazy et al., 2016). InConSurf, the conservation score of each protein residue indicates
the level of conservation, with score ‘‘1’’ indicating the residue is highly variable and score
‘‘9’’ indicating the residue is highly conserved. Residues are also predicted to be buried (b),
exposed (e), highly conserved and exposed (functional, f), or highly conserved and buried
(structural, s).

SPARKS-X fold recognition server (http://sparks-lab.org/yueyang/server/SPARKS-
X/index.php) is a template-based protein structure modelling tool (Yang et al., 2011).
The modelled protein structures were refined by using ModRefiner, which is a structure
refinement server that improves the structure quality, in terms of side-chain positioning
and backbone topology (Xu & Zhang, 2011). The structural impacts of the nsSNPs can
be predicted by studying the total free energy changes between the wild type and mutant
protein structures, as well as the root mean square deviation (RMSD) of the mutant
structures from the native protein structure.

RESULTS
Dataset retrieval from Ensembl
The SNP datasets of PICALM, SYNJ1 and SH3KBP1 genes were retrieved from the Ensembl
genome database. It contained a total of 1741 SNPs, including 395 UTRs (22%) variants,
188 (11%) splice site variants, 399 (23%) sSNPs and 759 (43%) nsSNPs. Out of a total
of 759 nsSNPs in the genes of interest, 106 were classified as ‘‘deleterious’’ in SIFT and
‘‘probably damaging’’ in PolyPhen-2, according to the results in the Ensembl genome
database. Figure S1 shows the total number of variants used in this study.
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Prediction analysis of UTRs variants
The information of the retrieved UTR sequences and the total number of variants on the
corresponding region are shown in Table S2. There were no 5′ UTR variants in SYNJ1 gene
in the Ensembl genome database.

In thewild typeUTR sequences ofPICALM gene, a total of 11motifs were identified from
the UTRScan. Out of a total of 35 UTR variants in PICALM gene, only one 3′ UTR variant,
rs796143140, caused an additional motif, namely K-box at position 212–219 of 3′ UTR
sequence. K-box is one of the 3′ UTRmotifs that mediates the negative post-transcriptional
regulation of RNA (Ganguli et al., 2013). K-box motif was not present in the wild type UTR
sequence of PICALM gene and the addition of the motif may affect transcript turnover
and translational efficiency.

In the wild type 3′ UTR sequence of SYNJ1 gene, a total of 20 motifs were identified from
UTRScan. Three 3′ UTR variants, including rs777138831, rs147590143 and rs111516740,
caused an addition of upstream open reading frame (uORF) while another four variants,
including rs767649429, rs143739621, rs761852713 and rs79652470, resulted in a deletion
of uORF in 3′ UTR. Variant rs780084162 caused an additional motif named UNR-binding
site (UNR-bs). UNR is one of the RNA-binding proteins that acts as a regulator in the
initiation of internal ribosomal entry site (IRES)-mediated translation and cap-dependent
translation (Saltel et al., 2017). Therefore, variant rs780084162 may affect the expression
of SYNJ1 gene and the actual biological effect of the additional UNR-bs needs to be further
experimentally validated.

For SH3KBP1 gene, there were a total of 21 motifs identified in the wild type 3′ and
5′ UTR sequences. Variant rs192424738 caused an addition of uORF; variant rs755895016
caused a deletion of uORF in the 3′ UTR sequence. Variant rs778448080 resulted in
a deletion of GY-box at position 2064–2070 of the 3′ UTR sequence. Like K-box and
Brd-box, GY-box is one of the 3′ UTR motifs that mediates the negative post-translational
regulation of RNA (Lai, Tam & Rubin, 2005). Therefore, deletion of the GY-box caused by
variant rs778448080 may affect the translation efficiency of SH3KBP1 gene.

Table 1 lists the variants that change the number of motif matched in UTRSite, as
compared with their wild type UTR sequences (see Table S3 for complete prediction
analysis results). Both 3′and 5′UTRs are enriched with cis-acting regulatory elements,
and both UTRs are important for the transcriptional and translational regulation. In
this study, a total of 12 UTR variants were predicted to cause an addition or a deletion
of regulatory elements in the UTR sequences. Further analysis on the impacts of these
regulatory elements, including the effect of the miRNA binding to the UTR sequence is
outside the scope of this study. However, it should be characterized in the future.

Prediction analysis of splice site variants
The prediction analysis of splice site variants was done using MaxEntScan, which is
integrated in VEP. Submission toMaxEntScan requires only the variant IDs. The consensus
score and score difference between wild type and mutant sequences were obtained after
the submission. The consensus score for each variant was calculated based on different
protein-coding transcripts and the same variant may have different consensus scores on
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Table 1 Variants with altered functional pattern(s) of the UTRs of PICALM, SYNJ1 and SH3KBP1 genes.

Variants ID Ref/Alt Minor allele
frequency

Number of
motif

Remarks

3′ 5′

PICALM
Wild type 10 1
rs796143140 T/C NA 11 1 Addition of K-box at position 212-219
SYNJ1
Wild type 20 –
rs777138831 G/C NA 21 – Addition of uORF at position 1915-1995
rs147590143 G/T NA 21 – Addition of uORF at position 1915-1995
rs780084162 G/T NA 21 – Addition of UNR-bs at position 1037-1047
rs767649429 -/AA NA 19 – Deletion of uORF at position 942-1037
rs143739621 G/A 0.00002/2 19 – Deletion of uORF at position 942-1037
rs111516740 G/A 0.0004/54 21 – Addition of uORF at position 887-979
rs761852713 -/G 0.0001/7 17 – Deletion of uORFs at position 372-437, 464-535 and 644-

751
rs79652470 C/T 0.0001/13 17 – Deletion of uORFs at position 182-289, 372-437, 464-535,

644-751, addition of uORF at position 205-810
SH3KBP1
Wild type 19 2
rs778448080 G/T NA 18 2 Deletion of GY-box at position 2064-2070
rs192424738 C/T NA 20 2 Addition of uORF at position 1380-1469
rs755895016 A/- NA 18 2 Deletion of uORF at position 1299-1370

different transcripts. This allowed users to study the impact of the splicing variant on
different transcripts. Table 2 shows the variants with score difference exceeding the defined
threshold. Columns ‘‘MaxEntScan Ref’’ and ‘‘MaxEntScan Alt’’ indicate the wild type and
mutant consensus scores, respectively. ‘‘Score difference’’ shows the differences between
the wild type and mutant consensus scores (as percentages) to predict the variant effects
in causing exon extension, intron retention or splice site creation. Table S4 comprises the
complete prediction analysis results for all the splice site variants.

A total of 18 variants were predicted to either disrupt or create splice sites, including 3,
13 and 2 variants from PICALM, SYNJ1 and SH3KBP1 genes, respectively. Among these
variants, 17 were predicted to disrupt the splice site, in which splicing was omitted or
disrupted, resulting in exon extension or intron retention. Variant rs533064963 in SYNJ1
gene was the only variant predicted to create a new splice site in the intron.

Genetic variations are known to affect alternative splicing. For example, some risk
alleles in genes including CLU, PICALM and PTK2B exert their biological impacts through
alternative splicing in the pathogenesis of AD (Raj et al., 2018). The 18 splice site variants
that were predicted to cause alternative splicing in this study should be further investigated
for their structural and functional impacts on the proteins.
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Table 2 List of variants predicted to break or create splice site of PICALM, SYNJ1 and SH3KBP1 genes.

Variants ID Ref/Alt Minor allele
frequency

Exon Intron MaxEntScan
Ref

MaxEntScan
Alt

Score
difference (%)

PICALM
rs371001564 G/A 0.00002/2 15/20 9.065917 0.623344 −93.12
rs781144984 T/C 0.000008/1 16/20 7.971843 2.847240 −64.28
rs768239913 A/G 0.00007/8 18/20 8.542122 2.867856 −66.43
SYNJ1
rs779813770 C/A 0.00009/1 1/32 8.703310 0.199354 −97.71
rs376825246 T/C 0.000008/1 11/32 7.844178 3.885060 −50.47
rs756697570 C/T 0.00005/6 12/33 7.638176 5.268185 −31.03
rs748110438 G/T 0.00003/3 13/32 8.681559 0.239421 −97.24
rs367718431 T/G 0.000009/1 13/32 8.681559 5.646822 −34.96
rs367718431 T/C 0.000009/1 13/32 8.681559 4.215421 −51.44
rs758644105 G/T 0.000008/1 16/32 8.941208 0.759180 −91.51
rs746368700 A/T 0.000009/1 17/33 9.256318 4.683645 −49.40
rs538934316 C/T 0.00003/4 19/32 5.263433 −3.346463 −163.58
rs755765674 A/C 0.00002/2 23/33 6.505994 3.822270 −41.25
rs533064963 T/A 0.00002/3 25/32 2.515213 3.906733 +55.32
rs61752550 G/A 0.0001/11 29/33 9.393973 3.084793 −67.16
rs373831795 T/A NA 31/32 10.077445 1.573490 −84.39
SH3KBP1
rs777396528 T/C 0.00001/1 8/17 8.138004 4.452207 −45.29
rs61761898 G/C 0.0035/303 15/18 9.095315 5.850377 −35.68

Prediction analysis of sSNPs
Out of the 399 sSNPs we studied, eight sSNPs were predicted as deleterious sSNPs in
PredictSNP2, including five from PICALM gene and three from SYNJ1 gene. Table 3 shows
the eight deleterious sSNPs. Tables S5–S7 describe the complete prediction results of sSNPs
in PICALM, SYNJ1 and SH3KBP1 genes, respectively.

Among the 99 sSNPs in PICALM gene, five were predicted to have deleterious effects.
Four out of those five, including rs779752380, rs777199260, rs775830584 and rs759002840,
are located on the PICALM ANTH domain. Among the three deleterious sSNPs in SYNJ1
gene, only rs768565296 is located on the 5-phosphatase domain of the protein. For
SH3KBP1 gene, all the 112 sSNPs were predicted to have neutral effects on the gene.

sSNPs affect protein expression and conformation through the regulation of RNA
splicing, mRNA stability, translation dynamics, translation rate and co-translational
folding of the protein (Sauna & Kimchi-Sarfaty, 2011). The actual biological impacts of the
eight deleterious sSNPs predicted in this study should be validated in the future.

Prediction analysis of nsSNPs
All 759 nsSNPs in the three genes were analyzed by five prediction packages. The Ensembl
genome database contains prediction results from SIFT and PolyPhen-2, in which a
total of 106 nsSNPs were predicted as ‘‘damaging’’ in SIFT and ‘‘probably damaging’’ in
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Table 3 Deleterious sSNPs of PICALM and SYNJ1 genes predicted by PredictSNP2.

Variants ID Ref/Alt Minor
allele
frequency

CADD DANN FATHMM FunSeq2 GWAVA Predict
SNP2

PICALM
rs779752380 C/G 0.000010/1 15.54 0.947688 0.91404 4 0.37 0.549842
rs777199260 A/G 0.000008/1 8.879 0.869109 0.93421 4 0.42 0.091749
rs775830584 T/C NA 13.32 0.963935 0.21828 3 0.32 0.111345
rs759002840 G/A 0.0002/20 17.47 0.964966 0.79634 0 0.34 0.459234
rs367839126 G/A 0.00003/3 19.81 0.959689 0.889 0 0.41 0.485786
SYNJ1
rs768565296 C/T 0.000010/1 17.88 0.91747 0.91944 0 0.58 0.473949
rs869206401 G/A NA 22.4 0.934833 0.75779 0 0.51 0.028194
rs772641102 G/A NA 21.4 0.942502 0.36483 0 0.41 0.019858

PolyPhen-2. Together with the prediction results from Mutation Assessor, I-Mutant2.0
and SNPs&GO, a total of 18 nsSNPs exceeded the cutoff points of all five packages and
were identified as deleterious nsSNPs. The prediction results of the deleterious nsSNPs
are summarized in Table 4 while the complete prediction results of nsSNPs using five
prediction packages are shown in Table S8. All the deleterious nsSNPs were predicted
with high SIFT score and most of them have a PSIC score larger than 0.95 in PolyPhen-2.
Prediction results from SIFT and PolyPhen-2 showed that all deleterious nsSNPs were
highly conserved in the proteins (Table 4).

There were four deleterious nsSNPs in PICALM gene predicted in this study. All of
them are located in amino acids 106 to 179 of the PICALM sequence. Positions 106
to 179 are located on the PICALM protein ANTH domain (23 to 283 aa) and ENTH
domain (14 to 145 aa), and these two domains were reported to be functionally redundant
(Maldonado-Baez et al., 2008; Manna et al., 2015). The ANTH domain of the protein is
important in the binding to phosphatidylinositol 4,5-bisphosphate (PIP2). The binding
of PICALM to PIP2 is important for the formation of clathrin-coated pit, which is one of
the key functions of PICALM in CME (Ishikawa et al., 2015). These deleterious nsSNPs
were predicted to cause conformation change and affect PICALM protein function. Fig. 1
shows the sticks representation of the protein structural changes caused by the deleterious
nsSNPs in PICALM gene. In Fig. 1, the variant residues are colored yellow while red dashed
lines indicate the hydrogen bonds between the residues. Variants rs780443419 (F109S) and
rs765338634 (L179P) resulted in an addition or a deletion of hydrogen bond formation
between the mutant and neighboring amino acids. Therefore, the substitution of these
protein residues could significantly affect the ANTH domain function as well as the overall
PICALM protein structure.

For SYNJ1 gene, 13 nsSNPs were predicted as deleterious. Six of them including
rs781675993, rs398122403, rs762909719, rs771755243, rs768897710 and rs779479360
are located on the Sac domain while another four including rs756845805, rs751110096,
rs147929290 and rs745418083 are located on the 5-phosphatase domain. Both Sac domain
and 5-phosphatase domain mediate the crucial SYNJ1 protein function of phosphate
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Table 4 Prediction of PICALM, SYNJ1 and SH3KBP1 deleterious nsSNPs.

Variant ID AA Subs Minor
allele
frequency

SIFT
score

PolyPhen
PSIC score

Mutation
assessor

I-Mutant
DDG

SNPs&GO

PICALM
rs750147583 L106S NA 0 0.999 Medium −1.93 0.644
rs780443419 F109S 0.00001 0 0.994 Medium −2.81 0.794
rs145115354 D144N 0.000008 0 1 Medium −1.57 0.784
rs765338634 L179P 0.00001 0 0.989 Medium −2.29 0.692
SYNJ1
rs781675993 N200K 0.000008 0 0.99 High −1.34 0.735
rs398122403 R258Q 0.00002 0 0.978 High −1.23 0.841
rs762909719 R289Q 0.000009 0 1 High −1.77 0.723
rs771755243 V338A 0.000008 0 0.928 Medium −1.16 0.598
rs768897710 Q414R 0.000008 0 0.999 High −1.14 0.751
rs779479360 G437D 0.00002 0 0.939 Medium −1.42 0.736
rs775515863 G487R 0.000008 0 0.988 Medium −1.81 0.79
rs752563697 G494D 0.000008 0 0.943 High −1.74 0.632
rs771070426 I515T 0.000008 0 0.969 Medium −3.5 0.653
rs756845805 G627S 0.000008 0 0.999 Medium −1.6 0.751
rs751110096 C723G 0.000008 0 0.996 Medium −2.59 0.826
rs147929290 I746T 0.000008 0.03 0.951 Medium −2.42 0.633
rs745418083 L776P 0.000008 0 0.981 Medium −2.32 0.861
SH3KBP1
rs770229859 R648Q NA 0 0.951 Medium −1.07 0.658

hydrolysis, and they were reported to function in a concerted way (see review in Hsu &
Mao (2013)). Besides that, a previous study has shown that both Sac and 5-phosphatase
domains are important in the synaptic vesicle endocytosis and SYNJ1 D730A mutant
completely eliminated the activity of 5-phosphastase domain (Mani et al., 2007). Although
the actual impact of the predicted deleterious variants is yet to be determined, these variants
may affect the domains function and influence the role of SYNJ1 in endocytosis as well.

Variant rs770229859 is the only predicted deleterious nsSNP in SH3KBP1 gene. This
variant changed residue arginine to glutamine at position 648, which is the C-terminal
coiled-coil domain of the protein. The coiled-coil domain of SH3KBP1 was previously
reported to be important in mediating the interaction between SH3KBP1 and phosphatidic
acid (Zhang et al., 2009). Moreover, deletion of the coiled-coil domain directly affected the
binding of SH3KBP1 to c-Cbl ubiquitin ligases, in which the interaction is essential for
the initiation of CME regulated by SH3KBP1 (Zhang et al., 2009). Interestingly, another
study has found that alanine mutation of four basic amino acids (K645, K646, R648 and
R650) on the coiled-coil domain can completely disrupt the interaction of SH3KBP1 with
phosphatidic acid and c-Cbl (Zheng, Zhang & Liao, 2014). Since the deleterious nsSNP
rs770229859 resulted in amino acid substitution at position 648 of SH3KBP1, this variant
is predicted to have a high likelihood of influencing the functions of the coiled-coil domain.
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Figure 1 Structural comparison between the wild type andmutant amino acids of PICALM protein in
sticks representation.No addition or deletion of hydrogen bonds between the mutant residues and the
surrounding residues were identified in variants (B) rs750147583 (L106S) and (F) rs145115354 (D144N),
as compared to their wild type structures as shown in (A) and (E), respectively. (D) Variant rs780443419
(F109S) resulted in addition of hydrogen bond with residues L106, as compared to its wild type struc-
ture as shown in (C). (H) Variant rs765338634 (L179P) resulted in deletion of hydrogen bonds between
residues M175 and D176, as compared to its wild type structure as shown in (G).

Full-size DOI: 10.7717/peerj.7667/fig-1

The structural and functional importance of the 18 deleterious nsSNPs were further
analyzed using ConSurf analysis tools. Evolutionary conservation analysis determines
the level of conservation of each protein residue and predicts the potential structural
and functional importance of these deleterious variants to the protein. Figure 2 shows
that 17 out of 18 (94%) deleterious nsSNPs were analyzed to be ‘‘conserved’’, with 12 of
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Figure 2 Evolutionary conservation of the deleterious nsSNPs of PICALM, SYNJ1, and SH3KBP1 pro-
teins by ConSurf server. (A), (B) and (C) showed the ConSurf output for PICALM, SYNJ1, and SH3KBP1
protein sequences, respectively. The position of each deleterious variant is labeled with a black rectangle.

Full-size DOI: 10.7717/peerj.7667/fig-2
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them (70%) ‘‘highly conserved’’ (score ‘‘9’’) through homologous sequence alignment.
Only one deleterious nsSNP, rs745418083 (L776S) in SYNJ1 gene, was estimated to be
‘‘intermediate’’ in terms of evolutionary conservation. Besides that, 11 of the 18 (61%)
deleterious variants were predicted as structural residues and the rest (39%) were functional
residues. Figures S2–S4 shows the conservation scores of full length proteins of PICALM,
SYNJ1 and SH3KBP1, respectively.

Besides the prediction analysis of the functional and structural importance of the
deleterious nsSNPs and their level of conservation on the proteins, the changes of physical
and chemical properties between wild type and mutant amino acids were studied. Table S9
shows the hydropathy, polarity and charge differences between the wild type and mutant
amino acids of the deleterious nsSNPs.

During protein synthesis, both covalent and non-covalent interactions are driven by
the physical and chemical properties of the amino acids. The hydropathy, size and charge
of the amino acids all play important roles in the protein synthesis (Biro, 2006). Table S9
shows that the hydropathy in eight deleterious nsSNPs has changed from hydrophobic to
hydrophilic, and the polarity of four nsSNPs has changed from non-polar to polar. The
substitution of amino acids may affect both covalent and non-covalent interactions among
amino acids, subsequently influencing the stability and conformation of protein structure.

To study the role of nsSNPs in affecting the total free energy and the stability of protein
structures, full lengths of both wild type and mutant protein structures were modelled
with the use of SPARKS-X server (Yang et al., 2011), and the structures were refined by
using ModRefiner (Xu & Zhang, 2011). Energy minimization of the protein structures
was performed by GROMOS96 force field using Swiss-PdbViewer. Table 5 shows the
energy deviation and RMSD between wild type protein structures of PICALM, SYNJ1
and SH3KBP1, and the 18 mutant protein structures of deleterious nsSNPs. RMSD values
were calculated to provide an insight into the deviation between the wild type and mutant
protein structures. The RMSD values are proportional to the deviation between the wild
type and mutant structures. The total free energy of wild type PICALM structure was
−24,238.746 kJ/mol, and the total free energy of the four PICALM mutant structures was
marginally decreased. The RMSD values also showed a minor deviation ranging from 1.13
to 1.45 Å. For SYNJ1 protein, the total free energy of the wild type structure was -19307.051
kJ/mol. The deviation of total free energy between SYNJ1 wild type and mutant protein
structures is significant. Among the 13 SYNJ1 mutant structures, variant rs398122403
(R258Q) has the highest total free energy of 3,057.503 kJ/mol, and variant rs775515863
(G487R) has the lowest total free energy of −28,591.270 kJ/mol. Among all the SYNJ1
variants, rs781675993 (N200K) has the highest RMSD value of 2.34 Å. Figure 3 shows
the structural comparison of the wild type SYNJ1 structure (green) and rs781675993
mutant structure (blue). Superposition of the two structures shows the structural deviation
caused by the variant. The only SH3KBP1 mutant structure caused by variant rs770229859
(R648Q) showed a decreased total free energy of −1,6167.838 kJ/mol, with a RMSD value
of 1.88 Å.

Tey and Ng (2019), PeerJ, DOI 10.7717/peerj.7667 13/25

https://peerj.com
http://www.ncbi.nlm.nih.gov/snp/?term=rs745418083
http://dx.doi.org/10.7717/peerj.7667#supp-2
http://dx.doi.org/10.7717/peerj.7667#supp-4
http://dx.doi.org/10.7717/peerj.7667#supp-13
http://dx.doi.org/10.7717/peerj.7667#supp-13
http://www.ncbi.nlm.nih.gov/snp/?term=rs398122403
http://www.ncbi.nlm.nih.gov/snp/?term=rs775515863
http://www.ncbi.nlm.nih.gov/snp/?term=rs781675993
http://www.ncbi.nlm.nih.gov/snp/?term=rs781675993
http://www.ncbi.nlm.nih.gov/snp/?term=rs770229859
http://dx.doi.org/10.7717/peerj.7667


Table 5 Total energy deviation and RMSD of deleterious nsSNPs of PICALM, SYNJ1 and SH3KBP1
proteins.

Variant ID AA Subs. Total energy
(kJ/mol)

Energy
difference

RMSD (Å)

PICALM (wild type) −24,238.746
rs750147583 L106S −24,759.834 −521.088 1.26
rs780443419 F109S −24,921.291 −682.545 1.45
rs145115354 D144N −24,494.619 −255.873 1.45
rs765338634 L179P −24,824.025 −585.279 1.13
SYNJ1 (wild type) −19,307.051
rs781675993 N200K −11,031.447 +8,275.604 2.34
rs398122403 R258Q 3,057.503 +22,364.554 2.15
rs762909719 R289Q −21,897.707 −2,590.656 2.02
rs771755243 V338A −17,907.066 +1,399.985 2.09
rs768897710 Q414R −18,169.162 +1,137.889 2.04
rs779479360 G437D −19,518.217 −211.166 2.08
rs775515863 G487R −28,591.270 −9,284.219 2.1
rs752563697 G494D −6,042.169 +13,264.882 2.24
rs771070426 I515T −9,617.264 +9,689.787 2.13
rs756845805 G627S −25,429.416 −6,122.365 2.13
rs751110096 C723G −23,460.332 −4,153.281 1.83
rs147929290 I746T −20,893.076 −1,586.025 2.25
rs745418083 L776P −18,299.359 +1,007.692 2.14
SH3KBP1 (wild type) −15,365.350
rs770229859 R648Q −16,167.838 −802.488 1.88

Verification of nsSNP prediction principle
To demonstrate the reliability of nsSNP prediction, we predicted the functional
consequences of other nsSNPs that have been previously studied in other benchwork
experiments. Ten PSEN1 pathogenic nsSNPs that have been validated experimentally to
affect amyloid-beta (Aβ) level were retrieved from ALZFORUM (https://www.alzforum.
org/). Besides that, another five PSEN1 nsSNPs, including three non-pathogenic variants
and two variants that have never been reported to be deleterious or disease-associated, were
selected as negative controls. The prediction results of the total 15 nsSNPs in PSEN1 gene
are shown in Table S10. The prediction results show that nine out of these ten pathogenic
nsSNPs were predicted deleterious by all five prediction packages used in this paper. The
only pathogenic nsSNP that was not predicted as deleterious variant, which is rs63750231
(E280A), has I-Mutant DDG and SNPs&GO score that is lower than the cutoff point. All
these five negative controls of PSEN1 nsSNPs were predicted to be non-deleterious to the
protein.

Computational prediction of the biological consequences of variants was previously
reported to yield a high false positive (FP) and low false negative (FN) rate, suggesting that
computational prediction tends to overestimate the deleterious effects of variants (Miosge
et al., 2015). To reduce the FP rate, our study implemented meta-prediction method to
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Figure 3 Superposition of wild type SYNJ1 structure and variant rs781675993 (N200K) mutant struc-
ture. This figure shows the truncated protein structure of 100 residues around the mutant sites. Wild type
SYNJ1 structure is green, and mutant SYNJ1 structure is blue. Wild type residue (N) at position 200 is red,
and mutant residue (K) at position 200 is purple.

Full-size DOI: 10.7717/peerj.7667/fig-3

perform functional prediction of nsSNPs. Despite one FN prediction result (rs63750231)
was reported, the overall prediction results of the PSEN1 pathogenic and non-pathogenic
nsSNPs indicate that the prediction approaches which were used, reliably predicted the
functional consequences of nsSNPs.

NGS data of AD studies
To check if any of the 56 deleterious variants were identified in the next generation
sequencing (NGS) studies of AD, genotype calling data (variant calling format (.VCF)
files) were retrieved from three studies including Alzheimer’s Disease Sequencing Project
(ADSP), Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Mount Sinai Brain
Bank (MSBB) studies. ADSP aims to identify genetic variants that increase the risk for or
protect against AD. The study consists of two parts, including a whole genome sequencing
(WGS) of 584 samples family-based study and a whole exome sequencing (WES) of 10,061
samples case-control study (Beecham et al., 2017). Genotype calling data of both WGS and
WES were retrieved from the study. For ADNI, the study is primarily designed to discover
novel biomarkers from a total of 800 individuals for the early detection of AD. The 800
individuals consist of 200 elderly controls, 400 mild cognitive impairment (MCI) and 200
AD patients. WGS of the 800 individuals was performed in the following add-on study and
the genotype calling data is publicly available (Weiner et al., 2015). For MSBB study, it aims
to discover novel molecular mechanism of AD pathogenesis from genomic, transcriptomic
and proteomic data consisting of 364 AD case-control human brains (Wang et al., 2018).
The raw and processed data of MSBB study are available through the Synapse software
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platform (https://www.synapse.org/#!Synapse:syn3159438) and the .VCF file of WES of
the study was retrieved.

Among the 56 deleterious variants predicted in this study, seven variants were also
identified in ADSP, ADNI or MSBB studies. Table S11 shows the deleterious variants that
were identified in the NGS studies of AD. Identification of these deleterious variants in
these NGS studies further suggests their potential association with AD. In these studies,
the genotype data was mapped on the reference genome GRCh37 while the variant data
retrieved from Ensembl genome database was mapped on GRCh38. Therefore, the variant
positions in both GRCh37 and GRCh38 are provided in Table S11.

DISCUSSION
In this study, a total of 56 SNPs in PICALM, SYNJ1 and SH3KBP1 genes were predicted
as deleterious variants for the genes and their gene products. These deleterious variants
included 12 UTR variants, 18 splice site variants, 8 sSNPs and 18 nsSNPs. These 12
deleterious UTR variants were predicted to cause an addition or a deletion of cis-acting
elements in UTR sequences, which may affect the post-transcriptional regulation of the
genes. These 18 deleterious splice site variants were predicted to disrupt gene splicing, which
can produce truncated or extended forms of the proteins. Meta-analysis by PredictSNP2
has predicted a total of 8 deleterious sSNPs in PICALM and SYNJ1 genes. These deleterious
UTR variants, splice site variants and sSNPs were expected to affect the regulation of gene
expression, as well as the stability of the mRNAs. For the 18 deleterious nsSNPs, most
of them are located on the functional domains of the proteins. These domains mediate
the main protein functions in the regulation of clathrin-mediated endocytosis (CME).
ANTH domain on PICALM regulates the formation of clathrin-coated pit while coiled-coil
domain on SH3KBP1 has an important role in the initiation of CME (Ishikawa et al., 2015;
Zhang et al., 2009). Specifically, both of the domains are involved in the early stage of
CME. For SYNJ1, the hydrolysis of PIP2 by Sac domain and 5-phosphatase domain may
be involved in the disassembly of clathrin-coated vesicles (Hsu & Mao, 2013), which is in
the late stage of CME. Therefore, identification of deleterious nsSNPs on these functional
domains may not only help to elucidate the functional impacts of these variants to the
proteins, but also may gain insight into the biological roles of these domains in CME.
Moreover, three endocytosis genes in this study have been linked to the pathogenesis of
AD. Hence, the prediction analysis of the deleterious variants may be relevant for the
gene-disease association study.

To date, GWAS and other genetic studies have successfully identified more than 20
risk genes associated with AD, but the molecular mechanisms of these genes remain to be
determined. To understand the molecular basis of these AD-associated genes in the disease,
one of the approaches is to identify functional SNPs from a vast number of neutral SNPs in
the gene of interest. However, it was estimated that SNP occurs in every 100 to 300 bases and
there are up to ten million SNPs in the entire human genome (Ke, Taylor & Cardon, 2008).
The massive number of SNPs in the entire human genome makes it impractical to perform
laboratory experiments to determine the functional consequences of all the SNPs, even for a
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single gene. For that reason, computational methods become an alternative and important
way to prioritize the SNPs that are possibly structurally or functionally significant for the
genes of interest. Computational methods such as prediction and modelling tools allow
researchers to identify functionally significant SNPs from neutral SNPs. The prediction
accuracy is expected to be improved when results from multiple algorithms are combined
to perform meta-prediction. Besides that, computational methods are able to provide high
throughput prediction results at lower cost and faster time, as compared with laboratory
experiments. Although study by Miosge et al. (2015) has pointed out the low specificity of
computational prediction, the discrepancy between the prediction and experimental results
of the variants impacts can be further improved by providing a better data quality and input
alignment design during computational prediction (Gallion et al., 2017). In conclusion,
computational methods is an essential part to provide initial assessment and prioritize the
SNPs that are most likely to be functional, which can largely improve research efficiency.

Although computational methods can significantly contribute to the task of identifying
functional SNPs, a limited number of studies had performed function prediction analysis
of the variants located in the disease-associated genes. Moreover, most of the function
prediction studies of variants only focus on annotating the functional consequences and
disease-relatedness of nsSNP since it was conventionally thought to have a higher impact
on the phenotype rather than the other types of variations. However, nsSNPs, sSNPs and
5′UTR variants have been reported to share similar likelihoods of association in Mendelian
diseases (Chen et al., 2010). Other than these three types of variants, more than 18,000
of all variants reported in the Human Gene Mutation Database (HGMD) are splicing
variants, which is about 9% of the total number of variants in the database (Stenson et al.,
2017). In the pathogenesis of complex diseases, the roles of genetic factors are much more
complicated than those in Mendelian diseases. Genetic variants in non-coding regions may
play a more prominent role than in coding regions in complex diseases since most of the
disease-associated variants identified in GWAS are located in non-coding regions (Zhang
& Lupski, 2015). Identifying pathogenic variants in both coding and non-coding regions of
genes associated with complex diseases can help to explain the genetic factors and networks
of the diseases. Therefore, this study does not target nsSNPs exclusively because it may
overlook other functionally significant variants that are associated with AD.

To our knowledge, 55 out of the 56 deleterious variants predicted in this study were
reported for the first time to be functionally or structurally significant for PICALM,
SYNJ1 and SH3KBP1 genes, and their gene products. Only one deleterious variant, which
is rs398122403 (R258Q) in SYNJ1 gene, was previously reported to be associated with
Parkinson’s disease (PD) (Krebs et al., 2013). Variant rs398122403 was found to disrupt
the phosphatase activity of Sac domain on SYNJ1 protein, leading to an impaired synaptic
function of SYNJ1 and causing an accumulation of endocytic proteins in the brains of
mutant mice, developing neurological symptoms similar to PD patients (Cao et al., 2017).
Although AD and PD have different clinical and pathological symptoms, many studies
suggested that they share some common molecular mechanisms, such as oxidative stress
and mitochondrial dysfunction (see review in Tan et al. (2019)). However, in the case
of SYNJ1, several studies suggested that the downregulation of SYNJ1 may alleviate the
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pathogenesis of AD (McIntire et al., 2012; Zhu et al., 2013). Intriguingly, the biological
effects of the SYNJ1 in AD don’t seem to be in line with budding yeast and C. elegans
orthologues (Treusch et al., 2011). Since the validated PD-associated variant rs398122403
was also predicted as deleterious variant in this study, and the mutant protein structure of
this variant has the highest total free energy among all the deleterious variants, the prediction
results of this study may serve as a good target for further investigation. Nevertheless, it is
not known if the variant rs398122403 is also associated with AD. SYNJ1 is one of very few
proteins associated with both AD and PD. Therefore, the SYNJ1 variants predicted in this
study may be useful to discover the biological roles of SYNJ1 on the molecular mechanisms
in AD and PD.

Previously, several AD-associated common variants have been identified from GWAS.
For example, variants rs3851179, rs541458 and rs561655 are associated with AD. These
three variants were not identified in this study since they are intergenic variants which are
located upstream of PICALM gene. On the other hand, theminor allele frequency (MAF) of
these three SNPs are over 0.3, which is much higher as compared to the deleterious variants
predicted in this study. Previous studies have reported that most of the AD-associated
common variants have a smaller effect size on the disease risk as compared to rare variants
(see review in Nicolas, Charbonnier & Campion (2016)). Therefore, the current research
direction is focused on identification of rare variants with a larger effect size that are
located in different genes (Pierre & Genin, 2014). The MAF of the 56 deleterious variants
predicted in this study are provided in Tables 1–4. The MAF data was obtained from the
Exome Aggregation Consortium (ExAC) in aggregated populations. All the deleterious
variants are very rare variants (average MAF < 0.00002). According to the ‘‘common
disease common variant’’ (CDCV) hypothesis, the risk of getting a common disease would
be relatively high along with the appearance of disease-predisposing alleles. Assuming that
the common alleles are the actual cause of common diseases, many causative alleles would
have been identified through GWAS. However, the current data do not seem to support
this hypothesis since only a very limited number of variants have been successfully linked
to the pathogenesis of certain diseases. Moreover, common variants identified from GWAS
are insufficient to explain the missing heritability of complex phenotypes and diseases (see
review in Blanco-Gómez et al. (2016)). On the other hand, the rare variants absent in GWAS
have been suggested to be an important factor in common disease susceptibility in the
common disease rare variant (CDRV) hypothesis (Auer & Lettre, 2015). Despite different
strategies used in the identification of disease-associated variants in both hypotheses, they
can work together to identify the common variants along with the genomic region and
locus through GWAS, followed by conducting the functional analysis of the rare variants.
Currently, no AD-associated rare variant in PICALM, SYNJ1 and SH3KBP1 genes has been
reported by other studies so far. It is plausible that the sample size of GWAS might not be
sufficient to identify disease-associated rare variants. Hence, our prediction analysis may
be useful to identify functional variants which could be absent in GWAS due to their rare
MAF.
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CONCLUSION
In our study, a total of 56 rare variants in PICALM, SYNJ1 and SH3KBP1 genes were
predicted as deleterious variants. These deleterious variants were predicted to affect the
regulation of gene expressions and protein functions. These genes have cellular functions
involved in clathrin-mediated endocytosis (CME) and deleterious variants in these genes
were expected to affect the functions of these proteins in endocytosis. Moreover, these genes
were previously reported as AD-associated and they are implicated in the pathogenesis
of AD. The deleterious variants in these genes may affect AD pathogenesis through
the disruption of the gene expressions and protein functions. In addition, seven of the
deleterious variants were also identified in three large NGS studies of AD, further suggesting
their possible roles in AD pathogenesis. The actual roles of these deleterious variants in
affecting protein functions in CME, as well as their implications in AD, are recommended
to be validated by future laboratory experiments.
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